Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Microbiol Methods ; 213: 106813, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37647945

RESUMO

Antimicrobial resistance disseminates throughout bacterial populations via horizontal gene transfer, driven mainly by mobile genetic elements (MGEs). Entrapment vectors are key tools in determining MGE movement within a bacterial cell between different replicons or between sites within the same replicon. The pBACpAK entrapment vector has been previously used to study intracellular transfer in Gram-negative bacteria however since pBACpAK contains a chloramphenicol resistance gene, it cannot be used in bacterial isolates which are already resistant to chloramphenicol. Therefore, we developed new derivatives of the pBACpAK entrapment vector to determine intracellular transfer of MGEs in an Escherichia coli DH5α transconjugant containing the chloramphenicol resistance plasmid pD25466. The catA1 of pBACpAK was replaced by both mcr-1 in pBACpAK-COL and aph(3')-Ia in pBACpAK-KAN, allowing it to be used in chloramphenicol resistant strains. The plasmid constructs were verified and then used to transform the E. coli DH5α/pD25466 transconjugants in order to detect intracellular movement of the MGEs associated with the pD25466 plasmid. Here we report on the validation of the expanded suite of pBACpAK vectors which can be used to study the intracellular transfer of MGEs between, and within, replicons in bacteria with different antimicrobial resistance profiles.


Assuntos
Cloranfenicol , Escherichia coli , Cloranfenicol/farmacologia , Antibacterianos/farmacologia , Plasmídeos/genética , Sequências Repetitivas Dispersas , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana
2.
Microbiol Spectr ; 11(1): e0327822, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36511714

RESUMO

Mobile colistin resistance (mcr) genes are often located on conjugative plasmids, where their association with insertion sequences enables intercellular and intracellular dissemination throughout bacterial replicons and populations. Multiple mcr genes have been discovered in every habitable continent, in many bacterial species, on both plasmids and integrated into the chromosome. Previously, we showed the intercellular transfer of mcr-1 on an IncI1 plasmid, pMCR-E2899, between strains of Escherichia coli. Characterizing the intracellular dynamics of mcr-1 transposition and recombination would further our understanding of how these important genes move through bacterial populations and whether interventions can be put in place to stop their spread. In this study, we aimed to characterize transfer events from the mcr-1-containing transposon Tn7511 (ISApl1-mcr-1-pap2-ISApl1), located on plasmid pMCR-E2899, using the pBACpAK entrapment vector. Following the transformation of pBACpAK into our DH5α-Azir/pMCR-E2899 transconjugant, we captured ISApl1 in pBACpAK multiple times and, for the first time, observed the ISApl1-mediated transfer of the mcr-1 transposon (Tn7511) into the chromosome of E. coli DH5α. Whole-genome sequencing allowed us to determine consensus insertion sites of ISApl1 and Tn7511 in this strain, and comparison of these sites allowed us to explain the transposition events observed. These observations reveal the consequences of ISApl1 transposition within and between multiple replicons of the same cell and show mcr-1 transposition within the cell as part of the novel transposon Tn7511. IMPORTANCE By analyzing the intracellular transfer of clinically relevant transposons, we can understand the dissemination and evolution of drug resistance conferring mobile genetic elements (MGEs) once a plasmid enters a cell following conjugation. This knowledge will help further our understanding of how these important genes move through bacterial populations. Utilizing the pBACpAK entrapment vector has allowed us to determine the mobility of the novel mcr-1-containing transposon Tn7511.


Assuntos
Colistina , Proteínas de Escherichia coli , Colistina/farmacologia , Antibacterianos/farmacologia , Escherichia coli/genética , Farmacorresistência Bacteriana/genética , Plasmídeos/genética , Elementos de DNA Transponíveis , Proteínas de Escherichia coli/genética , Bactérias/genética , Testes de Sensibilidade Microbiana
3.
J Med Microbiol ; 71(2)2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35225760

RESUMO

Introduction. Carbapenem-resistant members of the family Enterobacteriaceae are emerging as a global public-health threat and cause substantial challenges in clinical practice.Gap Statement. There is a need for increased and continued genomic surveillance of antimicrobial resistance genes globally in order to detect outbreaks and dissemination of clinically important resistance genes and their associated mobile genetic elements in human pathogens.Aim. To describe the resistance mechanisms of carbapenem-resistant Escherichia coli.Methods. Rectal swabs from neonates and newly diagnosed human immunodeficiency virus (HIV) infected adults were collected between April 2017 and May 2018 and screened for faecal carriage of carbapenamases and OXA-48 producing members of the family Enterobacteriaceae. Bacterial isolates were identified using matrix assisted laser desorption ionization time of flight mass spectrometry. Antimicrobial susceptibility testing was performed by E-test. Whole genomes of carbapenem-resistant E. coli were investigated using a hybrid assembly of Illumina and Oxford Nanopore Technologies sequencing reads.Results. Three carbapenem-resistant E. coli were detected, two from neonates and one from an HIV infected adult. All three isolates carried bla NDM-5. Two E. coli from neonates belonged to ST167 and bla NDM-5 co-existed with bla CTX-M-15 and bla OXA-01, and all were carried on IncFIA type plasmids. The E. coli from the HIV infected adult belonged to ST2083, and carried bla NDM-5 on an IncX3 type plasmid and bla CMY-42 on an IncI type plasmid. All bla NDM-5 carrying plasmids contained conjugation related genes. In addition, E. coli from the HIV infected adult carried three more plasmid types; IncFIA, IncFIB and Col(BS512). One E. coli from a neonate also carried one extra plasmid Col(BS512). All three E. coli harboured resistance genes to fluoroquinolone, aminoglycosides, sulfamethoxazole, trimethoprim, macrolides and tetracycline, carried on the IncFIA type plasmid. Furthermore, E. coli from the neonates carried a chloramphenicol resistance gene (catB3), also on the IncFIA plasmid. All three isolates were susceptible to colistin.Conclusion. This is the first report, to our knowledge, from Tanzania detecting bla NDM-5 producing E. coli. The carbapenemase gene was carried on an IncFIA and IncX3 type plasmids. Our findings highlight the urgent need for a robust antimicrobial resistance (AMR) surveillance system to monitor and rapidly report on the incidence and spread of emerging resistant bacteria in Tanzania.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Infecções por HIV , Adulto , Antibacterianos , Carbapenêmicos , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/epidemiologia , Infecções por HIV/complicações , Humanos , Recém-Nascido , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Tanzânia/epidemiologia , beta-Lactamases/classificação , beta-Lactamases/genética
4.
Microbiol Spectr ; 10(1): e0214021, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35044219

RESUMO

Mobile genetic elements (MGEs) are often associated with antimicrobial resistance genes (ARGs). They are responsible for intracellular transposition between different replicons and intercellular conjugation and are therefore important agents of ARG dissemination. Detection and characterization of functional MGEs, especially in clinical isolates, would increase our understanding of the underlying pathways of transposition and recombination and allow us to determine interventional strategies to interrupt this process. Entrapment vectors can be used to capture active MGEs, as they contain a positive selection genetic system conferring a selectable phenotype upon the insertion of an MGE within certain regions of that system. Previously, we developed the pBACpAK entrapment vector that results in a tetracycline-resistant phenotype when MGEs translocate and disrupt the cI repressor gene. We have previously used pBACpAK to capture MGEs in clinical Escherichia coli isolates following transformation with pBACpAK. In this study, we aimed to extend the utilization of pBACpAK to other bacterial taxa. We utilized an MGE-free recipient E. coli strain containing pBACpAK to capture MGEs on conjugative, ARG-containing plasmids following conjugation from clinical Enterobacteriaceae donors. Following the conjugative transfer of multiple conjugative plasmids and screening for tetracycline resistance in these transconjugants, we captured several insertion sequence (IS) elements and novel transposons (Tn7350 and Tn7351) and detected the de novo formation of novel putative composite transposons where the pBACpAK-located tet(A) is flanked by ISKpn25 from the transferred conjugative plasmid, as well as the ISKpn14-mediated integration of an entire 119-kb, blaNDM-1-containing conjugative plasmid from Klebsiella pneumoniae. IMPORTANCE By analyzing transposition activity within our MGE-free recipient, we can gain insights into the interaction and evolution of multidrug resistance-conferring MGEs following conjugation, including the movement of multiple ISs, the formation of composite transposons, and cointegration and/or recombination between different replicons in the same cell. This combination of recipient and entrapment vector will allow fine-scale experimental studies of factors affecting intracellular transposition and MGE formation in and from ARG-encoding MGEs from multiple species of clinically relevant Enterobacteriaceae.


Assuntos
Conjugação Genética , Elementos de DNA Transponíveis , Farmacorresistência Bacteriana Múltipla , Infecções por Enterobacteriaceae/microbiologia , Enterobacteriaceae/genética , Plasmídeos/genética , Antibacterianos/farmacologia , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Transferência Genética Horizontal , Humanos , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Plasmídeos/metabolismo
5.
Oral Dis ; 28(8): 2155-2167, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34464996

RESUMO

OBJECTIVE: To preliminary evaluate the clinical effects of probiotics in individuals with symptomatic oral lichen planus and the possible mechanisms of action. SUBJECTS AND METHODS: A group of 30 individuals with symptomatic oral lichen planus were recruited in a randomised double-blind parallel group controlled (1:1) proof-of-concept pilot trial of probiotic VSL#3 vs placebo. Efficacy outcomes included changes in pain numeric rating scale, oral disease severity score and the chronic oral mucosal disease questionnaire. Adverse effects, home diary and withdrawals were assessed as feasibility outcomes. Mechanistic outcomes included changes in salivary and serum levels of CXCL10 and IFN-γ and in oral microbial composition. RESULTS: The probiotic VSL#3 was safe and well tolerated. We observed no statistically significant change in pain, disease activity, quality of life, serum/salivary CXCL10 or oral microbial composition with respect to placebo. Salivary IFN-γ levels demonstrate a trend for a reduced level in the active group (p = 0.082) after 30 days of probiotic consumption. CONCLUSIONS: The present proof-of-concept study provides some weak not convincing indication of biological and clinical effects of probiotic VSL#3 in individuals with painful oral lichen planus. Further research in this field is needed, with the current study providing useful information to the design of future clinical trials.


Assuntos
Líquen Plano Bucal , Probióticos , Humanos , Líquen Plano Bucal/tratamento farmacológico , Dor , Projetos Piloto , Probióticos/uso terapêutico , Qualidade de Vida
6.
J Glob Antimicrob Resist ; 23: 145-148, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32889139

RESUMO

OBJECTIVES: Mobile colistin resistance (mcr) genes encoded on conjugative plasmids, although described only relatively recently, have been reported globally both in humans and livestock. The genes are often associated with the insertion sequence ISApl1 that can transpose the genes to novel genetic locations. Since its first report, multiple variants of mcr have been discovered in a variety of genetic locations in Escherichia coli, in plasmids and integrated into the chromosome. METHODS: Using hybrid assembly of short-read and long-read whole-genome sequencing data, the presence ofmcr-1 was confirmed on an IncI1 plasmid in E. coli. In vitro conjugation assays were performed to determine the potential to transfer between strains. Genetic comparison with previously reported IncI1 plasmids was performed. RESULTS: The genomic sequence identified thatmcr-1 is present on a complete IncI1 plasmid. Comparison with previously reported extended-spectrum ß-lactamase (ESBL)-encoding plasmids from E. coli in the Netherlands from the same time period indicated a distinct lineage for this plasmid. CONCLUSIONS: The observation ofmcr-1 on an IncI1 plasmid confirms that the genetic region of this gene is actively transposed between genetic locations. This active transposition has consequences for the study of the epidemiology of mcr in populations.


Assuntos
Colistina , Proteínas de Escherichia coli , Colistina/farmacologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Humanos , Carne , Países Baixos , Plasmídeos/genética , beta-Lactamases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...